
Active Surfaces for Video Tracking and 3-D Segmentation
Based on a New Method for Multidimensional Optimization

Nidhal Bouaynaya and Dan Schonfeld

Department of Electrical and Computer Engineering, University of Illinois at Chicago,
Chicago, USA.

ABSTRACT

We propose an optimal framework for active surface extraction from video sequences. An active surface is a
collection of active contours in successive frames such that the active contours are constrained by spatial and
temporal energy terms. The spatial energy terms impose constraints on the active contour in a given frame.
The temporal energy terms relate the active contours in different frames to preserve desired internal and ex-
ternal properties of the active surface. For computational efficiency, we reduce the 3-D active surface ((x, y, t)
coordinates) optimization problem to a 2-D model ((φ, t) coordinates) by considering only point indices along
normal lines φ of each contour and define the energy terms in a causal way. We develop an n-D dynamic tree
programming algorithm to find the optimum of n-D semi-causal functions. We prove that the n-D dynamic tree
programming algorithm converges to the global optimum. In particular, the classical 1-D dynamic programming
algorithm is a special case of the n-D dynamic tree programming algorithm. The optimal active surface is subse-
quently obtained by using the 2-D dynamic tree programming algorithm. Simulation results show the efficiency
and robustness of the proposed approach in active surface extraction for video tracking and segmentation of the
human head in real-world video sequences.

Keywords: tracking, segmentation, active surface, active contour, n-D dynamic programming.

1. INTRODUCTION

Robust object tracking in video sequences requires a parametric state representation of the target1 .2 In many
applications, however, it is important to extract the object contour by precisely delineating its boundary. For
example, in virtual reality, we need an accurate elastic contour delineating the object’s boundary in order to create
virtual scenes.3 Accurate contour delineation of objects is also necessary to refine the tracking or segmentation
process.4

Active contours (also known as snakes) have been proven to provide a powerful approach in elastic contour
extraction in still and moving images5 6 .7 In this approach, a compound energy function, taking into account
the contour properties and the image forces, is minimized. The curve properties are incorporated into an internal
energy function, which measures the desired properties of the contour such as smoothness and continuity. The
image forces are incorporated into an external energy term, which is derived from a selected image functional to
measure desired features such as edges, lines, regions, etc. The technique uses an initial guess of the contour and
fixed scalar parameters to weigh the different energy terms. The solution is highly dependent upon the weight
parameters which define the energy function as well as the initial contour due to the many local minima of the total
energy function. Many extensions and variations have been suggested to the original active contour by Kass et.
al.,5 referring to the definition of the energy function as well as the optimization technique. The balloon model8

and the dual active contour model9 are two different techniques proposed to reduce the sensitivity of the active
contour to the initial condition and prevent the solution from getting stuck at local minima. However, the balloon
model increases the number of parameters and the dual active contour model needs two initial contours: one
contracts from outside and the other expands from inside. Dynamic programming10 and simulated annealing11

algorithms have subsequently been proposed to reach the global minimum. A comparison of different active
contour models has also been investigated.12

In contour extraction of objects in video sequences, tracking is achieved on each frame separately except
for the propagation of the result from one frame to the next13 14 .4 Active contours are then used as a post-
processing or refinement procdedure. The initial condition of the active contour is given by the parametric

Figure 1. An active surface is formed by a collection of active contours in successive frames.

contour of the tracker.4 The sensitivity of the active contour to the initial condition and the weight parameters
at each frame, translates to an extremely jittery and unstable contour in video sequences. In other words, the
contour in the video sequence is not smooth over time. Hence the idea of incorporating temporal information
for contour extraction in video sequences. Chalana et. al. included a temporal energy function to detect cardiac
boundaries from a sequence of echocardiograms.15 However, their model is constrained by a monotonic motion
assumption. Moreover, the temporal energy term is applied to points that do not necessarily correspond to
each other. In,16 a spatio-temporal energy function is used to track the tongue contour in ultrasound images.
The proposed technique, however, requires two initial contours specified at two different depths. A motion
based contour extraction technique has been proposed in.17 In this approach, the authors pursue a sub-optimal
solution by decomposing the optimization with respect to the spatial and temporal energy terms.

We propose to use active surfaces to provide a stable and less jittery contour extraction from video sequences.
An active surface is formed by a collection of active contours in successive video frames (see Fig. 1). We simplify
the active surface optimization problem from a 3-D model ((x, y, t) dimensions) to a 2-D model((φ, t) dimensions)
by considering only observations along normal lines φ of each contour (see Fig. 2). Moreover, we define the
energy terms in a semi-causal way to allow propagation of the total energy from the the first normal line in
the first frame to the last normal line in the last frame of the surface. More generally, we extend the notion
of causality to n-D spaces as follows: a semi-causal cost function J from R

n to R evaluated at point xk1,··· ,kn

depends only on the cost of the set {xi1,··· ,in
: i1 ≤ k1, · · · , in ≤ kn and (i1, · · · , in) �= (k1, · · · , kn)}. We propose

an n-D dynamic tree programming algorithm to find the optimal solution of semi-causal n-D cost functions.
The dynamic tree programming algorithm has an intuitive geometric interpretation using the inclusion-exclusion
principle. The 1-D dynamic programming algorithm is a special case of the n-D dynamic tree programming
algorithm. We obtain the optimal solution of the 2-D active surface optimization problem by using the 2-D
dynamic tree programming algorithm.

This paper is organized as follows: In Section 2, we present the 2-D active surface model and define the spatial
energy compound function in a causal way. In Section 3, we motivate and define the different temporal energy
terms. Finally, we present a 2-D optimization problem whose solution yields the active surface. In Section 4,
we formulate the optimization problem of semi-causal n-D cost functions. We define the principle of optimality,
which states that the ‘tail’ of the optimal state is optimal for the corresponding ‘tail’ subproblem. Based on the
principle of optimality, we derive the n-D dynamic tree programming algorithm and prove, by induction, that it
converges to the optimal solution. The active surface optimization problem is then optimally solved in Section 5
using the 2-D dynamic tree programming algorithm. Section 6 presents some simulation results for active surface
extraction for video tracking and segmentation of the human head in video sequences. The temporal jitter of the
active surface is drastically reduced compared to an active contour extraction without any temporal constraints.
Conclusions and brief discussion of future work is presented in Section 7.

2. 1-D ACTIVE CONTOUR REPRESENTATION

Based on the 1-D active contour model presented in18 , we consider a 2-D active surface model. At frame t, only
observations along the normal lines of the contour are detected. Let φ = 1, · · · ,M be the index of normal lines
and λφ,t = −N, · · · , N be the index of pixels along the normal line φ at time t. Each normal line has 2N + 1
pixels, which are indexed from −N to N . The center point of each normal line is placed on the initial contour
and indexed as 0. I(λφ,t) denotes the intensity value pixel index λφ. The 2-D contour is then represented by the
set of its M normal lines. Figure 2 depicts a 1-D active contour model at frame t. We consider a sequence of

Figure 2. Illustration of the 1-D active contour model. We choose the ellipse to be the initial parametric contour given
by the tracking module of the human head. The elastic curve is the best local contour that we want to find. A set of
measurements are collected along the M normal lines of the initial contour. The 2-D contour is then represented by the
set of its M normal lines.

T video frames. The T active contours form the active surface. The video tracking and segmentation problems
can be formulated as the determination of the active surface represented by pixel locations λφ,t for each normal
line φ = 1, · · · ,M and time t = 1, · · · , T . Hence we reduced the 3-D model of the active surface optimization
problem to a 2-D model.

Like tractional contour models, we need to define energy functions, which impose constraints on the active
surface. We classify the energy terms into two categories: spatial and temporal. The spatial energy terms impose
constraints on the contour in a given frame independently of other contours in the other frames. The temporal
energy terms relate the active contours in different frames to impose desired properties on the active surface.
Spatial energy terms are depicted by a superscript s whereas temporal energy terms have the superscript t. To
do the optimization efficiently instead of the slow iterative search, we define the spatial and temporal energy
terms in a causal way. The optimal active surface can therefore be found by a single iteration of dynamic tree
programming as we will describe in Section 5. We begin by defining the spatial energy terms.

Spatial external energy The external forces push the contour towards the image features such as edges. The
external energy is then defined as a function of the image gradient along the direction of the line5 6:

Es
ext(λφ,t) = g(−| d

dλφ,t
I(λφ,t)|2) (1)

≈ g(−|I(λφ,t + 1) − I(λφ,t)|2), (2)

where g is a monotonically increasing function.

Spatial internal energy The spatial internal energy imposes smoothness of the contour by penalizing rough
contour points. In the traditional active contour model, the roughness is defined by the first and second derivatives

of the contour. This definition is not causal because the first and second derivatives depend on both the pixels
before and after the current pixel on the contour. This leads to an iterative solution of the optimization problem
,which is not adequate for real-time applications. Therefore, we redefine the spatial internal energy term in a
causal manner as follows:

Es
int(λφ,t, λφ−1,t) = |λφ,t − λφ−1,t|2. (3)

Spatial shape energy Taking into account a shape information will avoid the snake to lock onto unwanted
background features despite of the smoothness energy term. Assuming that the initial contour is relatively
accurate, we can penalize the points that are far away from the center of the normal line by fitting a zero-mean
Gaussian at the center point. For example, this situation can occur if the initial contour at each time frame is
the output of an accurate tracking module. The shape energy term is then defined by

Es
shape(λφ,t) =

λ2
φ,t

σ2
, (4)

where σ is the standard deviation of the Gaussian. If the tracking is not accurate enough for some frames ∗,
then σ should be large to reflect the inaccuracy of the initial contour.

The total spatial energy function is a weighted sum of the different spatial energy terms, i.e.,

Es(λφ,t, λφ−1,t) = αs
ext Es

ext(λφ,t) + αs
int Es

int(λφ,t, λφ−1,t) + αs
shape Es

shape(λφ,t), (5)

where αs
ext, α

s
int and αs

shape are the weight coefficients.

3. TEMPORAL CONSTRAINTS

We propose the incorporation of temporal energy terms in the total energy function. Similar to the spatial
energy terms, we choose the temporal energy terms to maintain a causal relation between adjacent normal lines.
Extension of the total energy to include both spatial and temporal energy terms is critical to provide a stable
and less jittery contour extraction in video sequences.

Temporal external energy The external energy term relates the active surface to the video features. In
traditional active contour models, the spatial external energy term relates the active contour to the current
frame features (e.g., edges, lines, texture) without taking into account the features of the neighboring frames.
If the current frame happens to have weak features due to noise or blurring, then the active contour will not
lock into the desired boundaries. Incorporating adjacent frames, which potentially have stronger features, will
influence the active contour to lock to the correct boundaries. Since we are considering intensity and gradients
as the image features, correlation is a suitable measure to find the best feature match in a given neighborhood
in adjacent frames. In order to maintain the causal relation between indices, we define the temporal external
energy as

Et
ext(λφ,t, λφ,t−1) = −|I(λφ,t)I(λφ,t−1) + I(λφ,t + 1)I(λφ,t−1 + 1)|2. (6)

Temporal internal energy In order to reduce the jitter of the active surface, we need to impose smoothness
constraints on the active surface. Similarly to the definition of the spatial internal energy function, we define the
temporal internal energy function as the causal approximation of the first derivative of the surface with respect
to time.

Et
int(λφ,t, λφ,t−1) = |λφ,t − λφ,t−1|2. (7)

The total temporal energy function is a weighted sum of the temporal internal and external energy functions,
i.e.,

Et(λφ,t, λφ,t−1) = αt
ext Et

ext(λφ,t, λφ,t−1) + αt
int Et

int(λφ,t, λφ,t−1). (8)
∗The accuracy of a tracking algorithm can be measured by a performance index, e.g., number of effective particles in

Particle filter trackers.19

Let c(φ, t) denote the optimal index point at normal line φ at time t and let S(φ, t) denote the optimal active
surface, which is a function of normal lines φ = 1, · · · ,M and time t = 1, · · · , T . The total objective function of
the active surface S(φ, t) is given by

E(S(φ, t), S(φ − 1, t), S(φ, t − 1)) =
T∑

t=1

M∑

φ=1

αs
ext Es

ext(S(φ, t)) + αs
int Es

int(S(φ, t), S(φ − 1, t)) (9)

+ αs
shape Es

shape(S(φ, t)) + αt
ext Et

ext(S(φ, t), S(φ, t − 1))

+ αt
int Et

int(S(φ, t), S(φ, t − 1)).

The optimal active surface S(φ, t) is the one that minimizes the total energy E for φ = 1, · · · ,M and t = 1, · · · , T .
A naive approach to this optimization problem would take (2N + 1)MT to find the optimal active surface.
Fortunately, the semi-causal definitions of the energy terms allows a dynamic tree programming algorithm,
which finds the optimal active surface in one single iteration as explained in the following sections.

4. N-D DYNAMIC TREE PROGRAMMING ALGORITHM
In this section, we consider the general optimization problem of a semi-causal cost function defined on R

n.

Problem Formulation Consider the following discrete-time semi-causal n-dimensional system

xk1+1,k2+1,··· ,kn+1 = fi1,i2,··· ,in
(xi1,i2,··· ,in

, ui1,i2,··· ,in
), (10)

such that i1 ≤ k1 +1, i2 ≤ k2 +1, · · · , in ≤ kn +1 and (i1, i2, · · · , in) �= (k1 +1, k2 +1, · · · , kn +1), ki = 0, · · · , Ni

for all i = 1, · · · , n, and where

• xi1,i2,··· ,in
is the n-D state at point (i1, i2, · · · , in).

• ui1,i2,··· ,in
is the control or decision to be selected from a given set.

Figure 3(a) illustrates the semi-causality condition in 2-D spaces. The control uk1,k2,··· ,kn
is related to the state

xk1,k2,··· ,kn
by the policy µk1,k2,··· ,kn

, i.e.,

uk1,k2,··· ,kn
= µk1,k2,··· ,kn

(xk1,k2,··· ,kn
). (11)

Let π be the policy vector
π = (µ0,0,··· ,0, µ1,0,··· ,0, · · · , µN1,N2,··· ,Nn

). (12)

To simplify the notations, we will remove the subscript (k1, k2, · · · , kn) from the considered functions whenever
there is no confusion about the meaning. The cost function starting at x0,0,··· ,0 is assumed to be additive, i.e.,

Jπ(x0,0,··· ,0) =
N1∑

k1=0

N2∑

k2=0

· · ·
Nn∑

kn=0

gk1,k2,··· ,kn
(xk1,k2,··· ,kn

, µk1,k2,··· ,kn
(xk1,k2,··· ,kn

)) (13)

In the 1-D case, i.e., n = 1, the cost function in Eq. (13) reduces to

Jπ(x0) = gN (xN) +
N−1∑

k=1

gk(xk). (14)

This is the additive cost function of the classical 1-D dynamic programming algorithm20 .21

The Optimization problem is performed over the policy vector π, i.e.,

J∗(x0,0,··· ,0) = min
π

Jπ(x0,0,··· ,0). (15)

The optimal policy satisfies
Jπ∗(x0,0,··· ,0) = J∗(x0,0,··· ,0), (16)

and π∗ is independent of x0,0,··· ,0.

(a) (b)

Figure 3. Semi-causality and strict semi-causality in 2-D spaces: (a) Semi-causal system: the state xm1,m2 depends on
all the states with dimensions (k1, k2) enclosed in the blue grid except for the dimension (m1, m2); (b) Strict semi-causal
system: the state xm1,m2 depends only on the states xm1−1,m2 and xm1,m2−1.

Principle of optimality Let π∗ = (µ∗
0,0,··· ,0, µ

∗
1,0,··· ,0, · · · , µ∗

N1,N2,··· ,Nn
) be an optimal policy. Consider the

‘tail subproblem’ whereby we are at xi1,i2,··· ,in
and wish to minimize the cost from point (i1, i2, · · · , in) to point

(N1, N2, · · · , Nn) with respect to the tail policy π = (µi1,i2,··· ,in
, · · · , µN1,N2,··· ,Nn

). The principle of optimality
states that the tail policy is optimal for the tail subproblem, i.e., π∗ = (µ∗

i1,i2,··· ,in
, · · · , µ∗

N1,N2,··· ,Nn
) minimizes

the cost from point (i1, i2, · · · , in) to point (N1, N2, · · · , Nn).

Theorem 1.(n-D Dynamic Tree Programming)
Start with J(xk1,··· ,ki−1,Ni,ki+1,··· ,kn

) = gk1,··· ,ki−1,Ni,ki+1,··· ,kn
(xk1,··· ,ki−1,Ni,ki+1,··· ,kn

) for all ki = 1, · · · , Ni, for
all i = 1, · · · , n and go backwards using

J(xk1,k2,··· ,kn
) = min

uk1,k2,··· ,kn

{
g(xk1,k2,··· ,kn

, uk1,k2,··· ,kn
) +

N1∑

i1=k1

· · ·
Nn∑

in=kn

(i1,··· ,in) �=(k1,··· ,kn)

g(xi1,··· ,in
)
}

(17)

= min
uk1,k2,··· ,kn

{
g(xk1,k2,··· ,kn

, uk1,k2,··· ,kn
) +

n∑

i=1

J(xk1,··· ,ki−1,ki+1,ki+1,··· ,kn
) (18)

−
(n,n)∑

(i1,i2)=(1,1)
i1 �=i2

(i1,i2)=(i2,i1)

J(xk1,··· ,ki1+1,··· ,ki2+1,··· ,kn
) + · · · · · ·

+ (−1)m−1

(n,n,··· ,n)∑

(i1,i2,··· ,im)=(1,1,··· ,1)
i1 �=i2 �=···im

(i1,i2,··· ,im)=P ((i1,i2,··· ,im))

J(xk1,··· ,ki1+1,··· ,kim+1,··· ,kn
) + · · · · · ·

+ (−1)n−1J(xk1+1,k2+1,··· ,kn+1)
}

,

where P ((i1, i2, · · · , im)) denotes a permutation of (i1, i2, · · · , im). Equation (18) is obtained from Eq. (17) using
the inclusion-exclusion principle. J(x0,0,··· ,0), generated at the last step, is equal to the optimal cost J∗(x0,0,··· ,0).
Also, the policy π∗ = (µ∗

0,0,··· ,0, · · · , µ∗
N1,··· ,Nn

) is optimal.

Corollary 1.(2-D Dynamic Tree Programming)
Start with J(xN1,k2) = gN1,k2(xN1,k2) for all k2 = 1, · · · , N2 and J(xk1,N2) = gk1,N2(xk1,N2) for all k1 = 1, · · · , N1.
Then go backwards using

J∗(xk1,k2) = min
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(xk1+1,k2) + J(xk1,k2+1) − J(xk1+1,k2+1)}. (19)

Proof of Theorem 1. We prove the dynamic tree programming algorithm in the 2-D case. The proof of the
n-D case (where n ≥ 3 and n is finite) follows by induction from the 2-D case. From Eq. (13), the cost function
starting at state x0,0 is

Jπ(x0,0) =
N1∑

k1=0

N2∑

k2=0

gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) (20)

We prove by induction that J(xk1,k2) = J∗(xk1,k2) defined as the optimal cost of the tail subproblem that
starts at state xk1,k2 . Let π̂k1,k2 denote a tail policy from point xk1,k2 onwards excluding the point xk1,k2 , i.e.,
π̂k1,k2 = {µk1+1,k2 , µk1,k2+1, µk1+1,k2+1, · · · , µN1,N2} . Initially, J(xN1,j) = J∗(xN1,j) and J(xi,N2) = J∗(xi,N2)
for all i = 0, · · ·N1 and j = 0, · · ·N2 are assumed to be known. Assume at stage (i1, i2) that J(xi1,i2) −
g(xi1,i2 , µi1,i2(xi1,i2)) is optimal for the tail problem from point (i1, i2) onwards excluding the point (i1, i2).
Then

J∗(xk1,k2) = min
µk1,k2 ,π̂k1,k2

{
gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) +

N1∑

i1=k1+1

N2∑

i2=k2+1

gi1,i2(xi1,i2 + µi1,i2(xi1,i2))

+
N2∑

j=k2+1

gk1,j(xk1,j , µk1,j(xk1,j)) +
N1∑

i=k1+1

gi,k2(xi,k2 , µi,k2(xi,k2)).
}

(21)

= min
µk1,k2

{
gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + min

π̂k1,k2

[N1∑

i1=k1+1

N2∑

i2=k2+1

gi1,i2(xi1,i2 + µi1,i2(xi1,i2))

+
N2∑

j=k2+1

gk1,j(xk1,j , µk1,j(xk1,j)) +
N1∑

i=k1+1

gi,k2(xi,k2 , µi,k2(xi,k2))
]}

. (22)

Figure 4(a) illustrates graphically the different summation terms in Eq. (21). Observe that

N1∑

i1=k1+1

N2∑

i2=k2+1

gi1,i2(xi1,i2 + µi1,i2(xi1,i2)) +
N2∑

j=k2+1

gk1,j(xk1,j , µk1,j(xk1,j)) +
N1∑

i=k1+1

gi,k2(xi,k2 , µi,k2(xi,k2))

= J(xk1+1,k2) + J(xk1,k2+1) − J(xk1+1,k2+1) (23)
= J(xk1,k2) − gk1,k2(xi1,i2 + µi1,i2(xi1,i2)). (24)

Equations (23) and (24) can be seen graphically from Fig. 4(b). Therefore, Eq. (22) becomes

J∗(xk1,k2) = min
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + min
π̂k1,k2

[J(xk1,k2) − gk1,k2(xi1,i2 + µi1,i2(xi1,i2))]} (25)

= min
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) +
(
J(xk1,k2) − gk1,k2(xi1,i2 + µi1,i2(xi1,i2)

)∗} (26)

By inductive assumption, J(xk1,k2) − gk1,k2(xi1,i2 + µi1,i2(xi1,i2)) is optimal for the corresponding sub problem.
Therefore,

(
J(xk1,k2) − gk1,k2(xi1,i2 + µi1,i2(xi1,i2))

)∗ = J(xk1,k2) − gk1,k2(xi1,i2 + µi1,i2(xi1,i2)). Finally, using
Eqs. (23) and (25), we obtain

J∗(xk1,k2) = min
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(xk1+1,k2) + J(xk1,k2+1) − J(xk1+1,k2+2)}. (27)

(a) (b)

Figure 4. Graphical illustration of the summation terms involved in the proof of Theorem 1: (a) Illustration of the
different summation terms in Eq. (21); (b) Illustration of the different cost functions in Eq. (23)

(a) (b) (c)

Figure 5. Illustration of the backpropagation process: (a) Initial optimal points; (b) Backpropagation from the initial
optimal points; (c) The recurrence step: the area enclosed by the trapeze contains the optimal points for the corresponding
sub problem, i.e., J(xi1+1,i2) + J(xi1,i2+1) − J(xi1+1,i2+1) is optimal for the subproblem from point (i1, i2) onwards
excluding the point (i1, i2). The goal is to determine the cost of (i1, i2), J(xi1,i2).

We verify that Eq. (27) is exactly Eq. (17) for n = 2.

We now specialize the result of Theorem 1 to a subclass of semi-causal cost functions, called strictly semi-
causal functions.

Definition 1. A discrete time n-D system is said to be strictly semi-causal if

xk1+1,k2+1,··· ,kn+1 = f({xk1+1,k2+1,··· ,ki−1+1,ki,ki+1+1,··· ,kn+1, µk1+1,k2+1,··· ,ki−1+1,ki,ki+1+1,··· ,kn+1 : i = 1, · · · , n}).
(28)

For instance, a 2-D discrete time semi-causal system is defined as

xk1+1,k2+1 = f(xk1,k2+1, xk1+1,k2 , µk1,k2+1(xk1,k2+1), µk1+1,k2(xk1+1,k2)). (29)

Figure 3(b) illustrates the strict semi-causality condition in 2-D spaces.

Corollary 2. (n-D Dynamic Tree Programming for strictly semi-causal systems)
Start with J(xk1,··· ,ki−1,Ni,ki+1,··· ,kn

) = gk1,··· ,ki−1,Ni,ki+1,··· ,kn
(xk1,··· ,ki−1,Ni,ki+1,··· ,kn

) for all ki = 1, · · · , Ni and
for all i = 1, · · · , n and go backwards using

µ∗
k1,k2,··· ,kn

= argmin
µk1,k2,··· ,kn

{
g(xk1,k2,··· ,kn

, uk1,k2,··· ,kn
) +

n∑

i=1

J(xk1,··· ,ki−1,ki+1,ki+1,··· ,kn
)
}

(30)

and J∗(xk1,k2,··· ,kn
) = J(xk1,k2,··· ,kn

, µ∗
k1,k2,··· ,kn

(xk1,k2,··· ,kn
)), (31)

where J is the cost function inside the minimization brackets in Eq. (18) and J(xk1,k2,··· ,kn
, µ∗

k1,k2,··· ,kn
(xk1,k2,··· ,kn

))
is the cost function J(xk1,k2,··· ,kn

) evaluated at µk1,k2,··· ,kn
(xk1,k2,··· ,kn

) = µ∗
k1,k2,··· ,kn

(xk1,k2,··· ,kn
).

Corollary 3. (2-D Dynamic Tree Programming for strictly semi-causal systems)
Start with J(xN1,k2) = gN1,k2(xN1,k2) for all k2 = 1, · · · , N2 and J(xk1,N2) = gk1,N2(xk1,N2) for all k1 = 1, · · · , N1.
Let J(xk1,k2) = gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(xk1+1,k2) + J(xk1,k2+1) − J(xk1+1,k2+1). Go backwards using

µ∗
k1,k2

= argmin
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(xk1+1,k2) + J(xk1,k2+1)}, (32)

and J∗(xk1,k2) = J(xk1,k2 , µ
∗
k1,k2

). (33)

Proof of Corollary 2. It suffices to prove the result for the 2-D case. The n-D case follows then by induction.
From Eq. (19), we have

J∗(xk1,k2) = min
µk1,k2

J(xk1,k2 , µk1,k2(xk1,k2)) (34)

= min
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(f(xk1,k2 , xk1,k2−1, µk1,k2 , µk1,k2−1)) (35)

+ J(f(xk1,k2 , xk1−1,k2 , µk1,k2 , µk1−1,k2)) − J(f(xk1,k2+1, xk1+1,k2 , µk1,k2+1, µk1+1,k2))}.
J(f(xk1,k2+1, xk1+1,k2 , µk1,k2+1, µk1+1,k2)) is independent of µk1,k2 . Therefore, Eq. (34) becomes

J∗(xk1,k2) = min
µk1,k2

{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(f(xk1,k2 , xk1,k2−1, µk1,k2)) (36)

+ J(f(xk1,k2 , xk1−1,k2 , µk1,k2))} − J(f(xk1,k2+1, xk1+1,k2)).

Hence,
µ∗

k1,k2
= argmin{gk1,k2(xk1,k2 , µk1,k2(xk1,k2)) + J(xk1+1,k2) + J(xk1,k2+1)}. (37)

and
J∗(xk1,k2) = J(xk1,k2 , µ

∗
k1,k2

(xk1,k2)) (38)

5. ACTIVE SURFACE OPTIMIZATION

From Eq. (9), we observe that the energy of index λφ,t depends only on the energies of λφ−1,t and λφ,t−1.
Therefore, we have a strictly semi-causal total energy function.

5.1. Dynamic tree programming
We first define the reverse problem as the original problem in which the direction of all arrows and paths are
reversed. So, a reversed active surface is a collection of active contours from frame N to frame 1 (time is reversed)
and in which the order of the normal lines φ is reversed, i.e., φ = M, · · · , 1.

The forward dynamic tree programming algorithm is the backward dynamic tree programming for the reverse
active surface. The semi-causal definitions of all energy terms allows us to propagate the total energy using the
forward dynamic tree programming algorithm and then back track the optimal surface. If the total energies
E(λφ−1,t) and E(λφ,t−1) are known, then the total energy E(λφ,t)can be propagated to every index point on line
φ as follows:

E(λφ,t) = min
(λφ−1,t,λφ,t−1)

{E(λφ−1,t + E(λφ,t−1) + αs
int Es

int(λφ−1,t) + αt
ext Et

ext(λφ,t−1) + αt
int Et

int(λφ,t−1)} +

αs
ext Es

ext(λφ,t) + αs
shape Es

shape(λφ,t). (39)

The initial conditions are set for time t = 1 and for normal lines φ = 1 as follows:

• At time t = 1,

– E(λ1,1) = αs
ext Es

ext(λ1,1) + αs
shape Es

shape(λ1,1), for all λ1,1 = −N, · · · , N ;

– For φ = 2, · · · ,M ,
E(λφ,1) = min(λφ−1,1){E(λφ−1,1) + αs

int Es
int(λφ−1,1)} + αs

ext Es
ext(λφ,1) + αs

shape Es
shape(λφ,1).

• At normal line φ = 1 and time t = 2, · · · , T ,
E(λ1,t) = min(λ1,t−1){E(λ1,t−1)+αt

ext Et
ext(λ1,t−1)+αt

int Et
int(λ1,t−1)}+αs

ext Es
ext(λ1,t)+αs

shape Es
shape(λ1,t).

For each pixel index λφ,t, record its spatial minimum argument, λφ−1,t, and its temporal minimum argument,
λφ,t−1. After the energy is propagated to the last normal line in the last frame, we backtrack to find the best
local active surface as follows:

1. In the last frame, T , let c(M, t) be the pixel index with the minimum total energy on line φ = M .
Backtrack through the recorded spatial minimum arguments; that is only spatial information is used
to find the last active contour because no temporal information is available at the last frame.

2. For frames t = T − 1, · · · , 1,
a. The optimal index point in the last normal M is the one that has the minimal energy E(λM,t).
b. For φ = M − 1, · · · , 1, there are two candidates for the optimal index point: the minimum spatial

argument of c(φ + 1, t) and the minimum temporal argument of c(φ, t + 1). Choose c(φ, t) to be the
minimum of the spatial and temporal arguments.

6. SIMULATIONS

We use the 2-D dynamic tree programming algorithm to find the optimal active surface of the human head from
cluttered office sequences. There are 499 frames in this sequence, with 30 frames per second. The tracking was
performed using a particle filter described by Bouaynaya and Schonfeld in.4 The tracker uses an ellipse as the
parametric state of the human head. Our goal is to obtain an elastic contour delineating the head’s boundaries.
At each frame, the ellipse is the initial contour. We consider an active surface composed of 8 successive frames.
We compare our simulation results with the 1-D randomly perturbed active contour model described in.4 Figure
7 shows that the active surface yields a much more stable and less jittery active contours of the target in the
video sequences.

(a) (b)

Figure 6. Illustration of the backpropagation process. We want to determine the optimal index point c(φ, t − 1) at
normal line φ at time t− 1 given that all optimal index points c(ϕ, τ) are known for every ϕ ≥ φ and every τ ≥ t− 1. We
distinguish 2 cases: (a) The minimum spatial argument of c(φ + 1, t − 1), argminspatialE(λφ+1,t−1), and the minimum
temporal argument of c(φ, t), argmintemporalE(λφ,t), are equal. Then, set c(φ, t− 1) = argminspatialE(λφ+1,t−1); (b) The
minimum spatial argument of c(φ + 1, t − 1) and the minimum temporal argument of c(φ, t) are different. Then, set
c(φ, t − 1) to be the argument (spatial or temporal) with the minimal total energy.

Figure 7. Object boundary delineation: (a) Active contours; (b) Active surfaces. (The video is courtesy of Stan Birchfield
of Stanford University).

7. CONCLUSION AND FUTURE WORK

Using the concept of active surfaces, we have developed a general framework for tracking and 3-D segmentation
based on a new method for multidimensional optimization. An active surface is a generalization of an active
contour to higher dimensions. Active surfaces appear naturally in image processing applications if we imbed the
problem in a higher dimensional space. For instance, adding the time dimension to a set of still images forms a
video. Thus, the problem of p contour extraction from a video sequence composed of p frames can be seen as
the problem of one surface extraction from a 3-D frame. We proposed the use of active surfaces to provide a
stable and less jittery contour extraction from video sequences. Efficient implementation of the proposed active
surface algorithm is provided by extension of dynamic programming to tree structures. We obtain a binary
tree as opposed to a one-dimensional trellis. By selecting the branch that minimizes the total energy cost we
generalized the Viterbi algorithm to minimization of semi-causal multidimensional cost functions. Future work
can investigate the sensitivity of the active surface to the initial surface and to the spatial and temporal weight
coefficients.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Sunil Peechara for conducting some of the simulations in the
paper.

REFERENCES
1. B. Anderson and J. Moore, Optimal Filtering, Prentice Hall, New Jersy: Englewood Cliffs, 1979.
2. M. Isard and A. Blake, “Condensation conditional density propagation for visual tracking,” International

Journal of Computer Vision 29(1), pp. 5–28, 1998.
3. E. Marchand and F. Chaumette, “Virtual visual servoing: a framework for real-time augmented reality,” in

Proc. Eurographics, p. 289298, 2002.
4. N. Bouaynaya and D. Schonfeld, “A complete system for head tracking using motion-based particle filter

and randomly perturbed active contour,” in Proceedings of SPIE Image and Video Communications and
Processing, A. Said and J. G. Apostolopoulos, eds., 5685, pp. 864–873, March 2005.

5. M. Kass, A. Witkin, , and D. Terzopoulos, “Snakes: Active contour models,” International Journal of
Computer Vision 1(4), p. 321331, 1988.

6. D. Terzopoulos and R. Szeliski, “Tracking with kalman snakes,” in Active Vision, A. Blake and A. Yuille,
eds., p. 320, MIT Press, 1992.

7. C. Chesnaud, P. Refregier, and V. Boulet, “Statistical region snake-based segmentation adapted to different
physical noise models,” IEEE Transactions on Pattern Analysis and Machine Intelligence 21, p. 11451157,
November 1999.

8. L. Cohen and I. Cohen, “Finite-element method for active contour models and balloons for 2-d and 3-d
images,” IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), pp. 1131–1147, 1993.

9. S. Gunn and M. Nixon, “Robust snake implementation: A dual active contour,” IEEE Transactions on
Pattern Analysis and Machine Intelligence 19, pp. 63–68, January 1997.

10. A. Amini, T. Weymouth, and R. Jain, “Using dynamic programming for solving variational problems in
vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence 12(9), p. 855867, 1990.

11. Storvik, “A bayesian approach to dynamic contours through stochastic sampling and simulated annealing,”
IEEE Transactions on Pattern Analysis and Machine Intelligence 16(10), pp. 976–986, 1994.

12. J. Denzler and H. Niemann, “Evaluating the performance of active contour models for real-time object
tracking,” in Second Asian Conference on Computer Vision, p. 341345, 1995.

13. F. Leymarie and M. Levine, “Tracking deformable objects in the plane using an active contour model,”
IEEE Transactions on Pattern Analysis and Machine Intelligence 15, pp. 617–634, June 1993.

14. Y. Akgul, C. Kambhamettu, and M. Stone, “Automatic extraction and tracking of the tongue contours,”
IEEE Transactions on Medical Imaging 18, p. 10351045, October 1999.

15. V. Chalana and D. Linker, “Model for cardiac boundary detection on echocardiographic sequences,” IEEE
Transactions on Medical Imaging 15, pp. 290–298, June 1996.

16. Y. Akgul, C. Kambhamettu, , and M. Stone, “A task-specific contour tracker for ultrasound,” in IEEE
Workshop on Mathematical Methods in Biomedical Image Analysis, p. 135142, (South Carolina), 2000.

17. M. Li and C. Kambhmettu, “Motion-based post processing of deformable contours,” in Indian Conference
on Computer Vision, Graphics and Image Processing, December 2002.

18. Y. Chen, Y. Rui, and T. Huang, “Mode-based multi-hypothesis head tracking using parametric contours,”
in Proc. Automatic Face and Gesture Recognition, p. 112117, May 2002.

19. A. Doucet, “On sequential simulation-based methods for bayesian filtering,” Tech. Rep.
CUED/FINFENG/TR.310, Signal Processing Group, Department of Engineering, University of Cambridge,,
CB2 1PZ Cambridge, 1998.

20. D. P. Bertsekas, Dynamic Programming and Optimal Control: Vol. I, Prentice-Hall, 2001.
21. D. P. Bertsekas, Dynamic Programming and Optimal Control: Vol. II, Prentice-Hall, 2005.

